

Page 1 of 23

Hello! In this part of documentation you will find out how to create logics for your own level.

version: final, author: Pejti

Special thanks: Zax37, Kubus_PL

Table of contents
Test level ... 2

a) Logic - structure ... 4

b) Claw inputs - basic values.. 5

c) VKeys - virtual keyboard .. 5

d) We are creating our first logic ... 6

Logic1 (Part I) - main function, movements and animation .. 6

Logic1 (Part II) - object initialization, conditional statements... 8

Logic1 (Part III) - object states handling .. 10

Homework ... 12

e) Officer which drops treasures and CreateObject function ... 13

Logic2 (Part I) - dropping treasure by object ... 13

Logic3 (Part I) - CreateObject function .. 15

Homework ... 16

f) Time, KeyPressed function ... 17

Logic4 (Part I) - new type of Elevator .. 17

Logic4 (Part II) - changing elevator into new object .. 20

Logic5 (Part I) - how to use keyboard keys to move object .. 21

Homework ... 23

Page 2 of 23

Test level

To show how CrazyHook level looks like and how new logics work I prepared level which

has name: !CHTest.WWD.

Once again some informations about parts of CH level:

a) ANIS - .ani files. I added CYCLE300.ani file and NEW folder, in this folder

CYCLE150.ani file.

Example for CYCLE300.ani file - CUSTOM_CYCLE300 (LEVEL_TORCHSTAND).

Example for file from NEW folder - CUSTOM_NEW_CYCLE150 (LEVEL_HANDS4 in

this level).

b) IMAGES - .bmp, .pid, .pcx files. I added SPLASH folder (it is empty, in La Roca

Claw can die only because of spikes). In other levels we can use default images (they must be

converted) or make new images and paste them to this folder. I added also NEW folder, in

this folder FRAME1.bmp file.

Example for file from NEW folder - CUSTOM_NEW (ROBBERTHIEF from 3rd level).

c) LEVEL - like above, .wav files. Folders in this "folder" you can treat as curiosity

because usually we use specific names. Difference between LEVEL folder and IMAGES

folder is, that LEVEL folder we can use for default logics.

Example 1: stalactite from 12th level. I added PROJECTILES -> STALACTITE folders, in

this folder stalactite images. In LEVEL folder I added STALACTITEHIT2.wav and

STALACTITESNAP2.wav. We have to write this in main.lua logic:

function OnMapLoad()

local init = MapAnisFolder(LoadFolder("LEVEL12_ANIS_STALACTITE"),"LEVEL_STALACTITE")

end

Example 2: RobberThief from 3rd level. I added ROBBERTHIEF and ARROW folders. In

first folder you can see images, .ani and .wav files. This is perfect example because all files

are in one folder. We do not need to set anything with arrows for this opponent.

d) LOGICS - .lua files. In this folder you will find all new logics. Example - I added Test

logic. It creates CrumblingPeg next to the start position. Other, new logics you will see on the

next pages.

e) MUSIC - .xmi files. LEVEL.xmi file - new music in level. It will replace default

soundtrack. I added also NEW.xmi file. Game will play this music if you will stand next to

the skull (NewMusic.lua logic).

f) SCREENS - .pcx file. I added LOADING.PCX file.

g) SOUNDS - .wav files. I added SOUND1.wav file and NEW folder, in this folder

SOUND2.wav file.

Page 3 of 23

Example (1st file) - CUSTOM_SOUND1 in Animation field (above LITTLEPUDDLE) .

Example (2nd file) - CUSTOM_NEW_SOUND2 in Animation field (above FLOORCELL).

Using new sounds is very simple.

h) TILES - .bmp, .pid, .pcx files. I added to the ACTION folder two files: 015.bmp and

311.bmp (from 3rd level). 015.bmp will be displayed properly. Instead new 311.bmp it will be

displayed default image from BASE level (La Roca). If new images have to be displayed

properly, you have to name them using different names than default names.

I added to the NEW folder 5 new images for tiles (from 2nd level). I added also new layer (Z:

8500) so I did not have to change names to display this tiles properly.

Page 4 of 23

a) Logic - structure

You can see above how structure of logic looks like. Of course it is only a scheme. Except

main function, you do not need to use other functions if you do not want.

1) Before any function you can use own, local variables.

2) init(self) function - we use this function if we want to set something when logic is

loading and before first state of the logic (0) will be changed to the next state.

3) main(self) function - in this function there are main variables and instructions. Logic

without this function will not work.

4) attack(self) function - in this function we write what logic will do if object (player in

this example) will enter to the attack area which was set in AttackRect.

5) hit(self) function - in this function we write what logic will do if object will be hit

(one of the meaning). Hit area is set in HitRect.

6) We can write own functions and use them. In main.lua logic we can write global

functions and global variables and then use them in new logics.

Page 5 of 23

b) Claw inputs - basic values

Name Hex Dec

Nothing 0 0

Jump 1 1

Fist/leg hit 2 2

Last used weapon 4 4

Change weapon 8 8

Lift/throw 20 32

Pistol shot 40 64

Sabre attack 42 66

Magic claw 80 128

Dynamite 100 256

Special attack 200 512

Left 1.000.000 16.777.216

Right 2.000.000 33.554.432

Up 4.000.000 67.108.864

Down 8.000.000 134.217.728

There are more values which we can use. If you want to find other values e.g. ’Down’ +

‘Sabre attack’ (Hex: 8.000.042, Dec: 134.217.794) you can:

1. Add both values: 134.217.728 + 66 = 134.217.794

2. Use GetInput() function.

Example - logic which we can use to get more values:

ATTENTION!

GetInput() function allows to get only these values which are assigned to specific moves like

left, punch or jump. You can not get values from all keys from keyboard.

c) VKeys - virtual keyboard

KeyPressed(arg) function allows to use all keys from keyboard. ‘arg’ - value in

hexadecimal system. You can find these values on this site:
https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Page 6 of 23

d) We are creating our first logic

As I wrote before, previous logics and logics which we will create will be in !CHTest

level. Names for our logics: Logic1, Logic2 etc.

Two ways, how to add new logic in Editor:

a) WapWorld - create new object and type in Logic: field CustomLogic, then type e.g.

Logika1 name in Name: field.

b) WapMap Beta - just select Custom option: Logic Type and then type name in Logic

field.

Logic name and .lua file name must be the same. We can edit LUA file with notepad (better

option is using Notepad++).

Logic1 (Part I) - main function, movements and animation

We create object like you can see on

this screenshot.

This is how logic looks like:

Now, check in game how the object will behave. So, what can you see? Object behaves

like animated object. We just created own implementation of AniCycle logic .

AnimationStep() function sets the right frame (I field in editor) for current animation.

Because our logic (main function) is working all the time, we can see animation.

But what does it mean that our logic work all the time?

We will write in logic new line (between 2nd and 3rd): self.X = self.X + 1. How the object

will behave? Object moves to the right. Officer looks like he is dancing MoonWalk . We fix

it by set Mirror flag in editor (Drawing flags).

Page 7 of 23

You can see how to set Mirror flag in object

properties.

Now, Officer is facing to the right way. Next line in our logic: self.DrawFlags.Mirror =

true. Now we do not have to set Mirror flag every time in editor.

We can also set image and animation for this object in our logic. At first we will clean

these fields in editor. We will use new functions: SetImage() and SetAnimation(). Our logic

should look like this:

Check now how the object will behave.

Something is wrong . Why the object has no longer animation?

In our logic we have logic problem. Before, I wrote that main function works all the time.

It means logic tries play LEVEL_OFFICER_ADVANCE animation from first frame in every

tick!

How we can solve this problem?

Page 8 of 23

Logic1 (Part II) - object initialization, conditional statements

When we create logic for object, we want some things set only once - initialization. We

will use function which you already know: init(self). We will write this function above main

function and we will move 3 elements: setting image, setting animation and Mirror flag. So,

our logic should look like this:

If you wrote everything right, congratulation! Officer has animation again .

What if you would like to have logic which can set new image/animation but also

possibility to set default image/animation? In this case we will use conditional statements.

a) At first we will write condition for default image: if self.Image == nil then (if we did

not select image, then). This condition we write above function which sets image. At the end

we have to close the function with end word.

b) Second condition for default animation: if self.Animation == nil then (if we did not

select animation, then). This condition we write above function which sets animation. At the

end we have to close the function with end word.

ATTENTION!

We test new logics using CrazyHook v1.4.4.4. It means that condition for default animation

looks differently than in previous CrazyHook versions. In old versions condition for default

animation looks like this: if self._Animation_ == 0 then.

If you wrote everything right, logic should look like this:

Page 9 of 23

We will insert second Officer with the same X coordinate above first Officer. Second

Officer will use the same logic like first Officer. We will make a small race . It is time to

modificate our code. Instead self.X = self.X + 1 we write self.X = self.X + self.SpeedX. As

you can see, we can use our values for speed.

In editor, for the first Officer we type in SpeedX field value 1, for second Officer, value 2.

In the last step, we will set for second Officer LEVEL_OFFICER_FASTADVANCE

animation (in editor). Now play the level and check which Officer will win (flag = finish) .

For now, Officers are moving only in the right side. We will try to set borders using: XMin

and XMax fields (in editor):

We can type values manually or by clicking

Pick and selecting XMin and XMax.

We will set the same values for XMin and XMax. Play level again. When Officer reached

border he went further. We have to write more instructions for logic. We have to tell the

Officers what they to do when they reach border .

Page 10 of 23

Logic1 (Part III) - object states handling

Look at the table below. This is example how to write states for logic and what we can use

after "==".

Left side of the table - we use numbers. It is good option if logic is short and is not

complex. But if we use local variables (right side of the table) code is more clearer. These

labels are better because we know for what label (state) is responsible for.

So we will write above init(self): local GOING_RIGHT = 0 function, line below local

GOING_LEFT = 1. local word before name of variable means that we can use this variable

only in specified block in logic. It means also that this variable will be used only if we need it.

We will write now new instruction. It will set direction for Officer when logic has state =

0. In init(self) function we write: if self.Direction == 0 then and next lines like at the

screenshot below:

But what exactly are these ”states”?

Using simple words, states mean ”what this object is doing now?”. Our object will be

doing two things. First state - moves to the right, second state - moves to the left. Logic can

use many states, it depends from our invention. Once again, object after level loading has

state = 0. init() function is like first logic state in which we write what should be set (similar

to what we set in editor).

In main function we will write condition for moving to the right when logic state =

GOING_RIGHT and second condition for moving to the left.

Page 11 of 23

We are so close to write full logic .

Next task for us is write instructions, change direction if Officer will reach border:

a) Below self.X = self.X + self.SpeedX line we will write first condition: if self.X >=

self.XMax then (if object reached value X greater than or equal to XMax then). Next line,

changing object state: self.State = GOING_LEFT and last line, changing object Mirror flag

to false.

b) Below self.X = self.X - self.SpeedX line we will write second condition: if self.X <=

self.XMin then (if object reached value X smaller than or equal to XMin then). Next line,

changing object state and Mirror flag to true. Full logic should look like this:

Check logic in game…

Page 12 of 23

Congratulations!

You know how to create animated object, set movements for object and how to use object

states. Setting Flags or default image/animation is easy for you.

Homework

 Write logic for object which will not move only in horizontal way. If object state will

change, image/animation will change. Add condition for default borders if you will forget set

them in editor.

 Challenge. Write logic similar to Logic1 which will not use init() function and will

not use local variables.

Page 13 of 23

 e) Officer which drops treasures and CreateObject function

Second logic will be using new functions. You will learn how to make more complex

things. Our task is to create new object (officer) which will be animated and will do new

activities. Goals:

a) officer after reaching border will do new animation

b) officer drops the coin, after that we change coin to other treasure

c) using CreateObject function logic will create CrumblingPeg to go further

Logic2 (Part I) - dropping treasure by object

We create new object, close to start position. In editor we set SpeedX = 1, XMin the same

like X of new object and XMax above FLOORCELL object which I added to editor. I

recommend these settings to focus only on new things.

In logic we set image and animation for walking. In this case officer will move only once,

to the right border. Write condition, like before that, if officer will reach XMax then state will

change and new animation will set - LEVEL_OFFICER_STRIKE. Example:

As you can see, if logic state = 0 logic sets default elements of logic. I wrote two things in

line 4 for shorter notation. You do not need to use this notation but it is good to know that

something like this exists.

What actually happened? Officer reached border and did new animation. We will write

another change for state and we will use new function: DropCoin() when logic state will be 3.

ATTENTION!

If you want to use variable, you should use dot after self, but if you want to use function,

you should use colon after self.

Page 14 of 23

We added coin drop function for officer. But what if we would add turnover for officer

after animation and coin drop in specific moment?

We will check in editor which animation frame we should use. Frame 204 will be perfect.

We will write instruction using two conditions if self.State == 2 and self.I == 204. It means

that both conditions must be met. Last thing is change Mirror flag. If you have any problems,

check screenshot below:

Why officer turnovered when animation was in a halfway?

We have to change it. Second condition should be like this ”is animation has finished?”.

Instead self.I == 204 we will use self._unkn_bool2 ~= 0. Now it works good. Do not focus

on how second condition looks like for now .

But what if we want other treasures, not only coins? What if we want the same treasure but

in specific place like place where officer hits using his sabre? We will need

CreateGoodie(table) function. Delete DropCoin() and use CreateGoodie {x=self.X,

y=self.Y, z=self.Z, powerup=33}. As you can see we can choose treasure and set X, Y, Z

coordinates. You do not need to write self in this line. So it is time to set place for coin drop.

You can see full logic below:

Page 15 of 23

Logic3 (Part I) - CreateObject function

Your next task will be write logic which will allow bypass the spikes. We will add this

logic close to the checkpoint flag. At first in main function we will set area in which Claw

will active the logic and variable which will detect that the Claw (player) is in this area. It is

not necessary but we will add image for this logic.

We change object state and image, I chose Catnip image. In the next line we write

self.AttackRect = {-32,-32,32,32}. In this way we set area for player.

Values in curly brackets: how many pixels from object center to the left side (Left), how

many pixels from object center to the top (Top), how many pixels from object center to the

right side (Right), how many pixels from object center to the bottom (Bottom).

In the next line we write self.AttackTypeFlags = ObjectType.Player. In this way we set

that only player can active logic. You may notice that the word Player has been written after

dot. We can change to other objects e.g. Enemy. You can read about what you can write after

dot in CrazyHook.lua (ObjectType) file which is in a main folder of Claw. Below end word,

which ends main function we will write attack function (logic - structure, page 4th). This logic

should look like this:

Now we will write CreateObject function in attack function.
CreateObject {x=self.X, y=self.Y, z=self.Z, logic=”CrumblingPeg”, image=”LEVEL_CRUMBLINGPEG”}.

x, y, z - coordinates for new object, logic - name of logic, image - image for new object.

We change coordinates to new object has been created above spikes. Check logic.

Why logic created so many CrumblingPegs instead only one?

We can solve this problem using one of two ways:

1. Inside attack function, we change object state to 2.

Page 16 of 23

2. We use Destroy() function.

Now we have only one CrumblingPeg .

We will try to use other logic to avoid death of falling on spikes. We will write Elevator

logic, Elevator image and after image, SpeedX = 200, XMin = 1800, XMax = 1840. (XMin

and XMax will depend on where we placed Elevator, CreateObject coordinates). Any

problems? Check screenshot below:

Now you can bypass spikes using Elevator and collect the skull as your reward. As you can

see writing logics is not that hard as you could think.

Congratulations!

You know how to create object which can drops treasures and you know more about

animation. CreateObject function is easy to use for you and you know how to active logic in

specific area.

Homework

 Write logic (object) which will drop random treasures in random places when you will

be (you will activate) in specific area.

 Write logic (object) which will move to random place every time when you will start

level again. Let logic changes state and animation when it will reach specific amount of

pixels. To change object state to the next object state animation must be finished.

 Challenge. Write logic A, if you will reach logic A area, let this logic create another

logic B (set image for new logic B) and if you will be 100 pixels away, logic B will be

destroyed.

Page 17 of 23

f) Time, KeyPressed function

In the last part of this document I will show you how to use time and other keys from the

keyboard than ”available” in GetInput function. You will use current knowledge and new

things. Goals:

a) create new type of Elevator, changing state after time

b) change Elevator to other object

c) create object, using keys from keyboard to move new object

Logic4 (Part I) - new type of Elevator

We start from the main function. We set image and we use self.HitRect and

self.ObjectTypeFlags to change object into the platform. You probably noticed that we do

not use self.HitTypeFlags. We have to set type of object to Special. Try to write this logic, if

you have any problems, check screenshot:

This logic we add next to the supercheckpoint (yellow flag, just jump into Warp). We can

stay on new platform but for now platform can not move. Probably you know what to use to

have working elevator. We will write condition, if Claw is on Elevator then Elevator will

move. We will use Object:IsBelow(object) function. ”Object” before colon means elevator,

second ”object” means Claw.

So, self:IsBelow(GetClaw()). In this case self means platform, GetClaw() function

means Claw. You can see below how to write this condition:

Check logic.

Platform can moves but Claw fell down, why?

We only added movement for elevator but not for Claw. It is simple to solve this problem,

we will write self.MoveClaw = 1 (or other value, which we add to self.X). Remember that

both values have to be the same.

Page 18 of 23

We will make some changes in second condition. We will write, if Claw will stay on

platform, only state will change. Now it is time to add next object state and in this state

platform will move. This is similar to TriggerElevator logic.

We will write two new variables after first condition, self.XMax = self.X + 250 and

self.StopTime = 0. First variable is a XMax border for platform, we will use second variable

in a while. I recommend to use X: 3470 and Y: 5240 coordinates for this logic to focus on

main goal. We will write another state change, if platform will reach border (XMax). If you

have problems, look at this screenshot:

Check logic.

In last state platform stopped but Claw no and he fell down on the spikes ,

why?

We can solve this problem, just write below self.State = 3 line self.MoveClawX = 0. Now

Claw will not move when object state will change to last state.

We will write next condition in which platform will move to the top. You know now what

to do. Below the first condition, like before we will write self.YMin = self.Y - 500. We will

add next state, if platform will reach YMin border. Logic should look like this (next page):

Page 19 of 23

Now we will use self.StopTime variable. Below self.MoveClawY = 0 line we will write

self.StopTime = GetTicks(). We saved time and assigned to the new variable. You are right

, we will use this variable in the next condition, which will look like this: subtract time

which is saved in self.StopTime variable from current time (we can use GetTime() function

or GetTicks() function) and if time is greater than 5 seconds (5000) then change object state

Try to write it but if you have problems, look at the screenshot:

I added movement for elevator if state = 4 and if elevator will be higher than Y = 5150

then object will back to the start position (start position of logic). We sacrificed more time to

write and understood logic but new knowledge will be useful for you in the future .

Page 20 of 23

Logic4 (Part II) - changing elevator into new object

Let's write again logic which will be an elevator. Leave self.XMax but change border to

750 pixels. We will write the same instruction, platform will move if Claw will be on

platform. If you have any doubts, screenshot:

We will add new condition, if Claw will be several dozen pixels away, platform will

change into treasure. In the next line we will change elevator image to treasure image. I chose

GAME_TREASURE_CHALICES_PURPLE. Now we will change position of treasure, about

175 pixels higher and we will change object type to 0.

We will do something similar to what you already know, if player will be in treasure area

he will collect treasure. You know one way to do this: self.AttackRect and attack(self)

function. This time you will learn another way. We will use logic coordinates and GetClaw()

function. Check screenshot below:

It is not a hard way but you must be careful when you use ”<”, ”>”. We set image for logic

but Claw can not collect treasure, let's change it. We will write below self.State = 5,

self:Destroy(). What will happen? We can ”collect” treasure but treasure does not have any

sound and what is worse, we will not get any points. To play any sound, you can use

PlaySound() function. Localization of sound is a function argument.

PlaySound(”GAME_PICKUP2”) - I chose this sound. Points we will add using

GetClaw().Score variable. We will add 2500 points (you can write any value, even negative

value). If you have any doubts, check screenshot on the next page:

Page 21 of 23

This treasure is not the same like original but as exercise it should be enough. If you want

you can add GLITTER and other things. Remember that self:Destroy() must be as last line in

instruction/function.

Logic5 (Part I) - how to use keyboard keys to move object

We will create another logic and we will set image. We will use W, A, S, D keys and

KeyPressed() function. Let's write simple condition ”if you press D key, then”. We have to

use value in hexadecimal system as function argument. You can find informations about these

values on some websites (look at 5th page of this document). This logic should look like this:

We will add possibility to control object with other keys from keyboard. We will use also

C key to change camera between Claw and this logic. We can use CameraToPoint()

function. Coordinates X and Y are arguments of this function. Code:

Check logic.

We can move object but it is not comfortable. Camera does not follow the object

.

Let's add possibility to move object diagonally and we will write CameraToPoint(self.X,

self.Y) function below every condition. Now logic should look like this (screenshot on the

next page):

Page 22 of 23

You can say ”this logic does not look very neatly”, that's right, we will change it in a

while. Now we will create last logic, only for Camera. Let's add new object to editor and call

it ”Camera”. We will set AlwaysActive flag to use logic always.

In newest logic we will write condition for C key, we will use similar function:

CameraToObject(). Argument of GetObject(ID) function is an ID number which you can

find in editor (Logic5 ID). Camera logic, screenshot:

I added also more conditions ”if C key is not pressed”. I used them to have logic which

reacts for key press, not for holding key. I used also CameraToClaw() function which I do

not need to describe.

Page 23 of 23

So, let's go back to Logic5 and let's write everything ”prettier”. Logic will work the same

but now all things look a more clearer, screenshot:

Now it looks better. I also changed comments.

Congratulations!

You mastered basics (even more ) how to create logics for CrazyHook levels. You know

how process of creating logic looks like and you can use your new knowledge now. Make

some new (crazy) things in your level. Good luck!

Homework

 Write logic, if you will type your name, Claw will get any (random) Powerup. You

can use ClawGivePowerup(powerupID,time) function. More informations you can find in

CrazyHook.lua file.

 Challenge. Use acquired knowledge to make crazy logic .

